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Abstract

The plane problems of piezoelectric wedges and multi-material wedges/junctions involving piezoelectrics are
studied in this paper. The study is focused on the singular behaviour of electroelastic ®elds at the corner of wedges
and junctions. The polarization orientation of the piezoelectric medium may be arbitrary. The problem is

formulated by extending Lekhnitskii's complex potential functions. In the homogeneous piezoelectric cases of a half
plane and a semi-in®nite crack, it is shown that the singularity is invariant with respect to the direction of
polarization and explicit solutions are derived for homogeneous boundary condition combinations. In general cases

involving multi-material systems, the order of singularity is determined by solving a transcendental characteristic
equation derived on the basis of boundary conditions and geometry. The accuracy of the numerical algorithm is
veri®ed by comparing with the existing results for pure elastic wedges. Numerical results of homogeneous

piezoelectric wedges indicate that electric boundary conditions have a signi®cant e�ect on the order of singularities.
A selected set of practically useful wedges and junctions involving piezoelectrics are studied to examine the in¯uence
of wedge angle, polarization orientation, material types, and boundary and interface conditions on the order of
singularity of electroelastic ®elds. # 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Piezoelectric; Singularities; Conductors; Electric ®eld; Stress concentrations; Adaptive structures; Wedges; Cracks; Inter-
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1. Introduction

The study of singular behaviour of stresses in elastic wedges is important to the design of wedges

(selection of wedge angles, material combinations, etc.) and in the development of failure criteria for

International Journal of Solids and Structures 37 (2000) 3253±3275

0020-7683/00/$ - see front matter # 2000 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683(99 )00143-2

www.elsevier.com/locate/ijsolstr

* Corresponding author. Fax: +1-204-474-7513.

E-mail address: rajapak@cc.umanitoba.ca (R.K.N.D. Rajapakse).



such systems. The knowledge of stress singularity at multi-material junctions/wedges is also essential in
the application of linear elastic fracture mechanics to such systems and composites. Due to their
intrinsic electroelastic coupling behaviour, piezoelectric materials have wide applications as sensors and
actuators in the ®eld of adaptive (smart) structures. In these applications, piezoceramic sensors/actuators
are embedded in or bonded to a parent structure. An adaptive structure generally has several composite
wedges and material junctions involving piezoelectric materials (Fig. 1). In addition, commonly used
piezoceramic stack actuators also involve some of the material junctions shown in Fig. 1. A precise
understanding of electroelastic singularities at corners of composite piezoelectric wedges and junctions is
valuable to the optimum design and failure analysis of piezoceramic actuators and adaptive structures.

In the case of a piezoelectric material, both stress and electric ®elds at a sharp corner may be singular.
This implies that either local mechanical failure due to stress concentration or dielectric failure due to

Fig. 1. Composite wedges and junctions encountered in adaptive structures and actuators.
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electric ®eld concentration could take place at a sharp corner. A review of literature reveals that a
comprehensive analytical and numerical study of electroelastic singularities in composite piezoelectric
wedges has not been reported when compared to extensive studies on elastic wedge problems (e.g.
Williams, 1952, 1956; Bogy, 1968, 1970; Hein and Erdogan, 1971; Dempsey and Sinclair, 1979; Delale,
1984; ManticÏ et al., 1997 and others). The only studies that addressed related problems are presented by
Sosa and Pak (1990) and Kuo and Barnett (1991). These studies examined electroelastic singularities at
the tip of planar cracks perpendicular to the direction of polarization in homogeneous piezoelectrics and
bi-material systems.

The main objective of this paper is to examine the electroelastic singularities at the corner of
composite piezoelectric wedges/junctions such as those shown in Fig. 1. Lekhnitskii's complex potential
functions (Lekhnitskii, 1963) and Williams' eigenfunction expansion (Williams, 1952) are extended to
piezoelectric solids. Characteristic equations for di�erent wedges and junctions are established by using
boundary conditions and geometry. There is no restriction on the polarization orientation of
piezoelectric materials with respect to the wedge/junction geometry in the analysis. Some explicit
solutions are obtained for special cases of piezoelectric half planes and cracks. The dependence of
electroelastic singularities on wedge angles, material combinations, direction of polarization, and useful
interface boundary conditions such as debonded interfaces and cracks is examined for several multi-
material systems.

2. Basic equations

Consider a piezoelectric wedge with hexagonal symmetry about or polarized along the direction z '
(Fig. 2). De®ne two Cartesian coordinate systems (x, y, z ) and (x ', y ', z ') with y0y ' as shown in Fig. 2.
The z-axis makes angle b with the direction of polarization z ' (b is measured from the z axis in the
counter-clockwise direction). The geometry of wedge is de®ned by the two angles a and j. A majority of
piezoelectric materials used in commercial applications are either hexagonally symmetric crystals or
polarized ceramics. The constitutive equations for such materials can be expressed by Eqs. (A1)±(A5) in
the Appendix. Assuming planar electroelastic ®elds independent of y, the constitutive equations with
respect to the (x, y, z ) system can be expressed as,

Fig. 2. A piezoelectric wedge.
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Exx � a11sxx � a12szz � a13sxz � b11Dx � b21Dz

Ezz � a12sxx � a22szz � a23sxz � b12Dx � b22Dz

2Exz � a13sxx � a23szz � a33sxz � b13Dx � b23Dz

Ex � ÿb11sxx ÿ b12szz ÿ b13sxz � d11Dx � d12Dz

Ez � ÿb21sxx ÿ b22szz ÿ b23sxz � d12Dx � d22Dz �1�

where Eij, sij, Ei and Di denote components of strain, stress, electric ®eld and electric displacement,
respectively; aij, bij and dij denote elastic, piezoelectric and dielectric constants, respectively. The
relationship between electroelastic material properties in the two coordinate systems is given in the
Appendix.

Introduce potential functions F(x, z ) and F(x, z ) as

sxx � @2F

@z2
; szz � @2F

@x2
; sxz � ÿ @

2F

@x@z
; �2�

Dx � @F
@z

; Dz � ÿ@F
@x
: �3�

It can be shown that the equilibrium and Maxwell's equations are automatically satis®ed. The above
potential function representation can be considered as an extension of Lekhnitskii's representation for
elastic solids. Using the strain and electric ®eld compatibility equations for piezoelectric solids, the
following sixth-order di�erential equation can be derived

D1D2D3D4D5D6F � 0 �4�

where

Dn � @

@z
ÿ mn

@

@x
,

and mn (n=1, . . . , 6) are the roots of the characteristic equation

l1�m�l3�m� � l22�m� � 0 �5�

and

l1 � d11m2 ÿ 2d12m� d22; l2 � b11m3 ÿ �b21 � b13�m2 � �b12 � b23�mÿ b22

l3 � a11m4 ÿ 2a13m3 � �2a12 � a33�m2 ÿ 2a23m� a22:

Generally the roots of Eq. (5) are distinct and the solutions of functions F and F are of the following
form.
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F�x, z� �
X6
n�1

Fn�zn�; F�x, z� �
X6
n�1

dn
@Fn�zn�
@zn

�6�

where zn=x+mnz, dn=l2(mn)/l1(mn).
The functions Fn(n = 1, . . . , 6) can be written as power series of zn. Since this study is focused on

singular ®elds, it is su�cient to consider only the leading term of the power series. Therefore,

F�x, z� �
X6
n�1

Anz
l
n; F�x, z� �

X6
n�1

ldnAnz
lÿ1
n �7�

where l is the power of the leading term and An(n=1, . . . , 6) are arbitrary coe�cients.
It is convenient to introduce a polar coordinate system (r, y ) as shown in Fig. 2 for the present class

of problems. The following solutions for electroelastic ®elds can be obtained by using Eq. (7) and basic
relations in piezoelectricity (Parton and Kudryavtsev 1988).

ur � l
X6
n�1

AnH1nr
lÿ1
n ; uy � l

X6
n�1

AnH2nr
lÿ1
n ; f � l

X6
n�1

AnH3nr
lÿ1
n

srr � l�lÿ 1�
X6
n�1

AnH7nr
lÿ2
n ; sry � 1

r
l�lÿ 1�

X6
n�1

AnH4nr
lÿ1
n

syy � 1

r
l�lÿ 1�

X6
n�1

AnH5nr
lÿ1
n

Dr � l�lÿ 1�
X6
n�1

AnH8nr
lÿ2
n ; Dy � 1

r
l�lÿ 1�

X6
n�1

AnH6nr
lÿ1
n

Er � ÿ1
r
l�lÿ 1�

X6
n�1

AnH3nr
lÿ1
n ; Ey � l�lÿ 1�

X6
n�1

AnH3nH4nr
lÿ2
n �8�

where ui denotes the displacement in the i-direction, f denotes the electrical potential, rn=r(cos y+mn
sin y ), and

H1n � pn cos y� qn sin y; H2n � ÿpn sin y� qn cos y; H3n � sn

H4n � sin yÿ mn cos y; H5n � cos y� mn sin y; H6n � ÿdn

H7n � �mn cos yÿ sin y�2; H8n � dn�mn cos yÿ sin y�

pn � a11m2n � a12 ÿ a13mn � dn�b11mn ÿ b21�

qn � �a12m2n � a22 ÿ a23mn � dnb12mn ÿ dnb22�=mn
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sn � b11m2n � b12 ÿ b13mn ÿ dn�d11mn ÿ d12�:
It is worth mentioning that Eq. (8) can also be obtained by utilizing the correspondence between plane
piezoelectricity and generalized plane strain in elasticity established recently by Chen and Lai (1997).
For example, the equations for the displacements and stresses of an anisotropic elastic wedge developed
by Ting (1986) could be used to derive Eq. (8) by following Chen and Lai (1997).

Elastic ®eld and electrical ®eld are decoupled in the case of elastic composites or electrodes, thus the
elasticity theory is separated from electrostatics. Polymer based composites are anisotropic and non-
conducting materials, therefore, the elastic ®elds are obtained by setting the coe�cients bij=dij=0 in Eq.
(1). The general solutions for displacements are

ur � l
X4
n�1

BnH
0
1nr

0lÿ1
n ; uy � l

X4
n�1

BnH
0
2nr

0lÿ1
n �9�

where r 0n � r�cos y� m 0n sin y�, Bn are arbitrary coe�cients, and m 'n, H '1n and H '2n are de®ned by Eqs.
(A9) and (A10) in the Appendix.

Most conductors used in the adaptive structures are elastic isotropic. The electric ®eld inside an ideal
conductor is zero leading to a constant potential (Cheston, 1964). The general solutions for isotropic
elasticity for the present class of problems are (Williams, 1952),

ur � rlÿ1

2m0�lÿ 1� �C1 cos lyÿ C2 sin lyÿ C3�lÿ 4k� cos�2ÿ l�yÿ C4�lÿ 4k� sin�2ÿ l�y�

uy � rlÿ1

2m0�lÿ 1� �ÿC1 sin lyÿ C2 cos ly� �2ÿ lÿ 4k��C3 sin�2ÿ l�yÿ C4 cos�2ÿ l�y�� �10�

where l0 and m0 are Lame's constants, k=(l0+2m0)/2(l0+m0) and Cn(n = 1, . . . , 4) are arbitrary
coe�cients.

Examination of the above general solutions for piezoelectrics, anisotropic composites and ideal
conductors reveals that singular ®elds exist only if the real part of l is less than two. Furthermore, the
boundedness of displacement or electric potential at the corner of a wedge requires the real part of l
must be greater than one. Therefore, admissible values of l are in the range of

1 < Re�l� < 2 �11�

3. Composite wedges and junctions

In this section, the characteristic equations for composite wedges and junctions are established to
determine the admissible values of l. Consider a piezoelectric wedge as shown in Fig. 2. Possible
boundary conditions on two radial edges are traction free (syy=sry=0) or clamped (ur=uy=0)
combined with electrically open (Dini=0 or Dy=0) or closed (f=0 or Er=0). Electrically open case
corresponds to an adjoining medium with zero (or negligible) dielectric constants (e.g. vacuum or air),
whereas electrically closed case corresponds to an adjoining ideal conducting medium (Kuo and Barnett,
1991). As shown in Table 1, four basic types of boundary conditions can be considered for a boundary
of a piezoelectric medium. The boundary conditions for an elastic medium are traction free
(syy=sry=0) or clamped (ur=uy=0). The continuities of the tangential component of the electric ®eld
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and the normal component of the electric displacement are demanded at a piezoelectric material
interface.

In the remainder of this section, the characteristic equations for composite wedges and junctions are
established to determine the admissible values of l.

3.1. Piezoelectric wedges

There are altogether ten possible combinations of boundary conditions for the two edges of a
piezoelectric wedge. For example, traction free and electrically open on both edges (Fig. 2) yield

syy�a� � sry�a� � Dy�a� � 0; syy�j� � sry�j� � Dy�j� � 0: �12�
Using Eqs. (8) and (12) or any other admissible boundary conditions, the following 6 � 6 homogeneous
equation system can be established.

�K �fAg � f0g �13�
where {A }={A1, A2, . . . , A6}

T is the vector of unknown coe�cients in Eq. (8), [K ] is the coe�cient
matrix whose elements are functions of l.

A non-trivial solution for Eq. (13) exists if,

det�K�l�� � 0: �14�
The determination of admissible values of l from the above characteristic equation is usually done using
a numerical algorithm although analytical solutions can be obtained for a few special cases as shown in
a subsequent section.

3.2. PiezoelectricsÐconductor/composite wedges and junctions

Referring to Fig. 3, material 1 is assumed to be piezoelectric and material 2 an isotropic elastic ideal
conductor. The following continuity conditions can be established at the material interface.

up
r �0� ÿ ue

r �0� � 0; u
p
y�0� ÿ ue

y�0� � 0; fp�0� � 0

sp
yy�0� ÿ se

yy�0� � 0; sp
ry�0� ÿ se

ry�0� � 0 �15�
where subscript p denotes a piezoelectric medium, and e denotes an electric conductor. In addition, a set
of admissible boundary conditions on the two outside edges has to be considered (Table 1). For
example, the following boundary conditions can be considered on the two outer edges.

Table 1

Admissible basic boundary conditions on edge surfaces

Case Mechanical Electric

1 traction free (syy=sry=0) electrically open (Dy=0)

2 traction free (syy=sry=0) electrically closed (f=0)

3 clamped (ur=uy=0) electrically open (Dy=0)

4 clamped (ur=uy=0) electrically closed (f=0)
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sp
yy�j� � sp

ry�j� � D
p
y�j� � 0; se

yy�a� � se
ry�a� � 0: �16�

Substitution of Eqs. (8) and (10) in Eqs. (15) and (16) results in a homogeneous system of equations
similar to Eq. (13) for the ten coe�cients An(n = 1, 2, . . . , 6) and Cn(n = 1, . . . , 4). The admissible
values of l is obtained from the corresponding characteristic equation. In the case of a bi-material
junction, Eq. (16) is replaced by a set of interface conditions similar to Eq. (15) corresponding to the
other interface.

In the case of piezoelectric/elastic composite wedges and junctions, the condition f p=0 is replaced by
D p

y=0 in Eq. (15) to ensure full electric insulation along the bi-material interface.

3.3. Two piezoelectric material wedges

Consider the case of a wedge consisting of two piezoelectric materials as shown in Fig. 3. The two
outer edges are assumed to be traction free and electrically insulated. The interface and boundary
conditions can be expressed as,

up1
r �0� ÿ up2

r �0� � 0; u
p1
y �0� ÿ u

p2
y �0� � 0; E p1

r �0� ÿ E p2
r �0� � 0;

sp1
yy�0� ÿ sp2

yy�0� � 0; sp1
ry �0� ÿ sp2

ry �0� � 0; D
p1
y �0� ÿD

p2
y �0� � 0

sp1
yy�j� � 0; sp1

ry �j� � 0; D
p1
y �j� � 0

sp2
yy�a� � 0; sp2

ry �a� � 0; D
p2
y �a� � 0 �17�

where superscript p1 and p2 denotes a piezoelectric medium, one and two, respectively.
The substitution of Eq. (8) in Eq. (17) yields a system of homogeneous equations similar to Eq. (13)

for the twelve unknown coe�cients A p1
n (n = 1, 2, . . . , 6) and A p2

n (n = 1, 2, . . . , 6). The admissible
values of l are obtained by solving the corresponding characteristic equation. The above methodology
can be directly extended to consider piezoelectric bi-material junctions.

The general procedure to determine the admissible values of l for multi-material wedges and junctions
is identical to the bi-material case except for the presence of more than one interface. The order of the
®nal equation system [Eq. (13)] is determined by the number and type (elastic, piezoelectric) of the

Fig. 3. A bi-material system.

X.-L. Xu, R.K.N.D. Rajapakse / International Journal of Solids and Structures 37 (2000) 3253±32753260



materials. For example, in the case of a three-material wedge with one medium being piezoelectric and
the rest elastic materials a 14� 14 homogeneous equation system is obtained.

4. Special cases of half plane and crack

The special cases of piezoelectric half planes and semi-in®nite cracks are analytically examined in this
section.

The geometry of a wedge is de®ned by two angles a and j (Fig. 2). A half plane can be de®ned by (g,
g2p ), and a semi-in®nite crack by (g+p, gÿp ), where the angle g can be arbitrary. To study the e�ect
of polarization orientation on the singularities of half planes and cracks, the angle b can be ®xed while
keeping g arbitrary. b is set to zero without loss of generality. Eq. (8) can be rewritten in the matrix
form as,

u�y� � l
X6
n�1

Anh1r
lÿ1
n ; t�y� � 1

r
l�lÿ 1�

X6
n�1

Anh2r
lÿ1
n �18�

where u(y )={ur, uy, f }T, t(y )={sry, syy, Dy}
T, h1={H1n, H2n, H3n}

T, h2={H4n, H5n, H6n}
T.

It can be proven that the characteristic equation for a half-plane or a semi-in®nite crack when the
boundary of the half-plane or the crack faces are oriented at an angle y=g is identical to that at y=0.
Therefore, for special cases of a piezoelectric half plane and a crack, the singularities are independent of
the polarization orientation. This conclusion applies to all admissible boundary condition combinations
de®ned in Table 1.

Consider a piezoelectric half plane (0, p ) and the direction of polarization b is set to zero without loss
of generality. Using Eq. (18) and the boundary condition combinations in Table 1, it is found that
combinations 1±1, 2±2, 3±3 and 4±4 all result in the following characteristic equation.

sin lp � 0: �19�
Apparently, no root of Eq. (19) satis®es the requirement 1< Re(l ) < 2. Therefore, for piezoelectric half
planes, no singularities are found for the homogeneous boundary conditions.

A semi-in®nite crack (p, ÿp ) in a piezoelectric medium with a polarization angle 08 is considered
without loss of generality. Consider four homogeneous boundary condition combinations of 1±1, 2±2,
3±3 and 4±4. They all lead to the following characteristic equation.

sin 2lp � 0: �20�
Only one root, l=1.5, satis®es Eq. (20) resulting in the classical inverse square root type singularity.
Kuo and Barnett (1991) employed Stroh's formulation (1962) and obtained the same result for a semi-
in®nite crack in a piezoelectric medium.

Based on the results by Ting (1986) for general anisotropic elastic wedges, the above conclusions can
also be drawn by following the correspondence between plane piezoelectricity and generalized plane
strain in elasticity (Chen and Lai, 1997). In the case of free-clamped boundary condition combination
for elastic wedges, Ting (1986) showed that, if d is an order of singularity for a half plane, then d/2 and
(dÿ1)/2 are orders of singularities for a semi-in®nite crack. It can be easily shown that this conclusion is
also applied to any admissible boundary condition combinations for piezoelectric half planes and semi-
in®nite cracks.
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5. Numerical results and discussion

Two polarized piezoceramics, namely PZT-4 and PZT-5 (Berlincourt et al., 1964), graphite/epoxy
composite, and two isotropic conductors, aluminum and nickel, are used in the numerical study. The
relevant material properties are given below.

PZT-4 (Eqs. (A1) and (A2)):

s 011 � 10:9� 10ÿ12 m2=N, s 033 � 7:90� 10ÿ12 m2=N, s 012 � ÿ5:42� 10ÿ12 m2=N

s 013 � ÿ2:10� 10ÿ12 m2=N, s 044 � 19:3� 10ÿ12 m2=N

g 031 � ÿ11:1� 10ÿ3 Vm=N, g 033 � 26:1� 10ÿ3 Vm=N, g 015 � 39:4� 10ÿ3 Vm=N

b 011 � 7:66� 107 V2=N, b 033 � 8:69� 107 V2=N

PZT-5 (Eqs. (A1) and (A2)):

s 011 � 14:4� 10ÿ12 m2=N, s 033 � 9:46� 10ÿ12 m2=N, s 012 � ÿ7:71� 10ÿ12 m2=N

s 013 � ÿ2:98� 10ÿ12 m2=N, s 044 � 25:2� 10ÿ12 m2=N

g 031 � ÿ11:4� 10ÿ3 Vm=N, g 033 � 24:8� 10ÿ3 Vm=N, g 015 � 38:2� 10ÿ3 Vm=N

b 011 � 6:53� 107 V2=N, b 033 � 6:65� 107 V2=N

Aluminum (Young's modulus E and Poisson's ratio n ): E=68.9 GPa, n=0.25
Nickel: E=210 GPa, n=0.31
Graphite/epoxy composite (G is the shear modulus):

Exx � 132:8 GPa, Ezz � 10:76 GPa, Eyy � 10:96 GPa

Gzy � 3:61 GPa, Gxy � 5:65 GPa, Gxz � 5:65 GPa

vxz � 0:24, vxy � 0:24, vzy � 0:49

The characteristic equation for a wedge/junction is transcendental and has in®nite number of roots. The
root l can be real or a complex quantity. Numerical experiments show that the roots are generally
complex for composite systems and real roots exist for some cases of piezoelectric wedges. The order of
electroelastic singularity is governed by the real part of (lÿ2). The root of primary interest is the one
with the smallest positive real part between one and two. The existence of a non-vanishing imaginary
part of (lÿ2) leads to oscillatory singularity (Suo, 1990). All roots meeting the requirement in Eq. (11)
are presented in the numerical study in order to present a complete picture of the nature of singularities
in composite piezoelectric wedges/junctions. Plain strain conditions are assumed throughout the
computations. A numerical procedure based on MuÈ ller's method (MuÈ ller, 1956) is used to search for
admissible values of l.
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To verify the accuracy of the numerical procedure, the solutions for piezoelectric bi-material wedges
are compared with those for isotropic bi-material wedges given by Hein and Erdogan (1971) through a
limiting process. Referring to Fig. 3, consider Material 1 and Material 2 as isotropic ideal elastic
materials with Young's moduli E1/E2=10/31 and Poisson's ratios v1=0.22, v2=0.30. Hein and Erdogan
(1971) presented the solutions for two wedges, i.e. a=ÿj=908 and a=908, j=ÿ1808. To simulate the
above isotropic elastic bi-material wedges, set s '11=3.23 � 10ÿ1 m2/N, s '33=3.23 � 10ÿ1 m2/N,
s '12=ÿ0.97 � 10ÿ1 m2/N, s '13=ÿ0.97 � 10ÿ1 m2/N, s '44=8.39 � 10ÿ1 m2/N as elastic constants of
Material 1; s '11=10 � 10ÿ1 m2/N, s '33=10 � 10ÿ1 m2/N, s '12=ÿ2.2 � 10ÿ1 m2/N, s '13=ÿ2.2 � 10ÿ1 m2/
N, s '44=24.4 � 10ÿ1 m2/N as elastic constants of Material 2. The piezoelectric constants g 'ij of the two
materials are set to negligible values ( g 'ij4 0) in order to simulate ideal elastic behaviour. The solutions
are compared in Table 3 and very good agreement is observed.

5.1. Piezoelectric wedges

Consider a PZT-4 wedge with polarization direction along the z-axis (b=0 in Fig. 2). Without loss of
generality, set j=ÿa in the numerical study. Figs. 4(a) and (b) show the variation of the order of
singularity with the wedge angle 2a for the homogeneous boundary condition combinations 1±1 and 4±4
in Table 1, respectively. It is found that all roots are real. The two cases considered have singularities
only for reentrant wedges, i.e. wedge angles between 1808 and 3608. Two roots exist for all wedge angles
between 1808 and 3608 while a third root appears between 2708 and 3608, and 1808 and 3608 for
boundary condition combinations 1±1 and 4±4 respectively. An increase in the order of singularity is
noted with increasing wedge angle. For the limiting case of a semi-in®nite crack, two of the roots
approach the classical value of ÿ0.5. An investigation of wedges with mixed boundary conditions in
Table 1 (e.g. 1±4) shows roots for wedge angles less than 1808, and the presence of more than three
roots. According to the study of elastic wedges by ManticÏ et al. (1997), there are in general two roots
for traction free B.C. on both edge surfaces, while the present study shows combinations 1±1, 2±2 and
1±2 have three roots. Therefore, piezoelectric wedges generally have one or more extra admissible roots
compared to the corresponding elastic case.

Three special cases of wedges, namely a right angle (2a=908), a half plane (2a=1808) and a semi-
in®nite crack (2a=3608) are of interest in engineering. Eq. (14) is numerically unstable for 2a=3608,
and 2a=359.998 was used in the computations. Table 2 shows the order of singularities (lÿ2)
corresponding to the ten possible boundary condition combinations based on Table 1. Numerical results
agree with the analytical solution presented earlier for boundary condition combinations 1±1, 2±2, 3±3
and 4±4 for a half plane and a crack. The roots for half planes and cracks in Table 2 are valid for all
possible polarization angles b in view of the earlier ®nding that roots are invariant with b. Table 2 also
shows roots for mixed boundary conditions, such as those considered by Kuo and Barnett (1991), on
the two edge surfaces. The order of singularity for semi-in®nite cracks is stronger than the classical
inverse square root singularity and oscillatory type singularities exist for mixed boundary conditions. In
addition, up to six admissible roots may exist for some mixed boundary conditions. At least one of the
singularities is of inverse square root type for half planes with mixed boundary conditions and
oscillatory singularities exist for some cases. Note that the relation between columns 3 and 4 con®rms
the conclusion given earlier, i.e., if d is an order of singularity for a piezoelectric half plane, then d/2 and
(d±1)/2 are orders of singularities for a semi-in®nite crack with identical boundary conditions. The
comparison of results between boundary condition combinations in Table 2 indicates that electrical
boundary conditions have a signi®cant in¯uence on the order of singularities. In the case of a right
angle wedge, singularities exist only for mixed boundary conditions. One admissible root was found and
the singularity is normally weaker than that corresponding to a half plane or a crack. No oscillatory
type singularities are found.
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Figs. 5 and 6 show the e�ect of polarization orientation (b ) on the order of singularities for PZT-4
wedges. In Fig. 5, the dependence of the order of singularity on b is examined for two wedge angles
2408, 3008 under traction free and electrically open boundary conditions on both edges. Note under the
assumed boundary conditions, singularities exist only for wedge angles greater than 1808. The
singularities are identical for orientations b and ÿb showing symmetry about b=0. The singularity
corresponding to b= 2 908 is slightly stronger than that corresponding to b=0 indicating a weak
dependence on the polarization orientation. Oscillatory type singularities are not found. The results for
right angle wedges (2a=908) with traction free boundary conditions on one edge surface, i.e.

Fig. 4. Variation of the order of singularity with the wedge angle.
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combinations 1±3, 1±4, 2±3 and 2±4 in Table 1, are shown in Fig. 6. Oscillatory type singularities exist

only in the case of combination 2±3. A strong dependence on the polarization orientation is observed

for all boundary condition combinations except for 2±4 and the roots are symmetrical about b=08. The
combination 1±4 shows two roots for vbv > 458 and the strongest or weakest singularity exists when the

poling direction is along the z- or x-axis. An exception occurs for the combination 2±3 resulting in the

weakest singularity for b22508.

Table 2

Order of singularities for a right angle wedge, half plane and crack (b=0)

B.C. combinations Special wedges

Right angle Half plane Crack

1±1 (2±2, 3±3, 4±4) ± ± ÿ0.5000
1±2 ÿ0.0731 ÿ0.5000 ÿ0.7500, ÿ0.5000

ÿ0.2500
1±3 ÿ0.2176 ÿ0.500020.14395i ÿ0.5000

ÿ0.750020.07197i

ÿ0.250020.07197i

1±4 ÿ0.4855 ÿ0.6261 ÿ0.8131, ÿ0.6869
ÿ0.5000 ÿ0.3131, ÿ0.2500
ÿ0.3739 ÿ0.1869, ÿ0.7500

2±3 ÿ0.3445 ÿ0.5000 ÿ0.7500, ÿ0.2500
ÿ0.500020.22991i ÿ0.750020.11495i

ÿ0.250020.11495i

2±4 ÿ0.3442 ÿ0.500020.04309i ÿ0.5000
ÿ0.750020.02154i

ÿ0.250020.02154i

3±4 ÿ0.0416 ÿ0.5000 ÿ0.7500, ÿ0.5000
ÿ0.2500

Table 3

Comparison of roots l for isotropic bi-material wedges (Fig. 3)

Geometry Present Hein and Erdogan (1971)

a=908 1.9494 1.949

j=ÿ908 2.840220.2801i 2.84020.280i

3.805620.8125i 3.80020.800i

4.846220.8687i 4.85020.850i

5.845021.1679i 5.90021.150i

a=908 1.6474 1.650

j=ÿ1808 1.9751 1.977

2.733220.2857i 2.73320.286i

3.078020.2225i 3.08020.220i

3.998820.1296i 4.00020.130i

4.845320.8707i 4.85020.950i

5.001520.1598i 5.00020.130i

5.999720.1384i 6.00020.130i

1.6388, 2.3526

3.6474, 4.3526

5.6474
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A study of PZT-5 wedges show that singularities follow trends similar to those in Figs. 4±6 and Table
2, and the magnitude of roots are also nearly identical.

5.2. PiezoelectricÐconductor wedges and junctions

The results for PZT-4±aluminum/nickel wedges and junctions are presented in Figs. 7 and 8. The ®rst
case considered (Fig. 7(a)) involves aluminum or nickel (treated as an ideal conductor) quarter plane
bonded to a PZT-4 quarter plane. The edges of the PZT quarter planes are traction free and electrically
open, and traction free for conductors. Interface conditions are given by Eq. (15). The polarization

Fig. 5. Variation of the order of singularity with the polarization angle for traction free and electrically open wedges.

Fig. 6. Variation of the order of singularity with the polarization angle for right angle wedges.

X.-L. Xu, R.K.N.D. Rajapakse / International Journal of Solids and Structures 37 (2000) 3253±32753266



orientation b is varied from 1808 to ÿ1808. Only one root is observed for aluminum and two for nickel.
The singularity in nickel±PZT wedge is stronger than that in aluminum±PZT wedge. The latter system
has a very weak singularity with less dependence on b. The in¯uence of poling direction is more
signi®cant in the case of nickel±PZT wedges with b=ÿ458, 1358 showing the strongest singularities. In
general, the singularity is weaker than the classical inverse square root singularity. An aluminum or
nickel wedge bonded to a PZT-4 half plane is considered in Fig. 7(b). Setting polarization orientation
angle b=0, the e�ect of wedge angle a is investigated. Three roots exist for both nickel and aluminium,
and the singularities become more severe as the wedge angle a increases. The case of an interface crack

Fig. 7. Order of singularity for PZT-4Ðaluminium (nickel) wedges.
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is obtained when a=1808 and the singularity is found to be stronger than the classical inverse square
root singularity for both bi-material systems.

A fully bonded PZT-4±aluminum or nickel junction is considered in Fig. 8(a) for varying angle a and
three poling directions (b=08, 908, 1808). The results for b=08 are identical to that for b=1808. No
singularity exists when a is less than 1808 for both aluminum and nickel. When a is larger than 1808, a
very weak singularity is noted for aluminum±PZT system only for b=908. The root corresponding to
nickel±PZT system increases rapidly until a is closer to 2408 for the three poling directions. An
additional root for this system exists for a closer to 2708 when b=908. The singularities are weaker than

Fig. 8. Order of singularity for PZT-4Ðaluminium (nickel) junctions.
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the classical inverse square root singularity. Consider the same bi-material systems except that the
interface de®ned by angle a is fully debonded and electrically open, as shown in Fig. 8(b). Three roots
are found for aluminum, and four for nickel. Singularities exists for all values of a considered and are
stronger for both nickel±PZT and aluminum±PZT systems when compared to the fully bonded case in
Fig. 8(a). The singularity is also stronger than the classical inverse square root singularity for most a in
the case of nickel. Based on the results shown in Figs. 7 and 8, it can be concluded that aluminium-PZT
systems have weaker singularities in most cases when compared to nickel-PZT systems. The same

Fig. 9. Order of singularity for PZTÐgraphite/epoxy systems.
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systems are considered with electrically closed boundary conditions on the debonded interface and the
results are found to follow trends quite similar to Fig. 8(b) with some di�erence in the magnitude.

5.3. PiezoelectricÐgraphite/epoxy wedges and junctions

The roots of a PZT±Gr./Ep. wedge with traction free and electrically open outer edges are shown in
Fig. 9(a). The interface is fully bonded and electrically insulated. The in¯uence of wedge angle a on the
order of singularity is investigated, while the polarization b is set to zero. Generally two roots exist with
one over the full range of a, while another exists only for a larger than 808. The singularities become
stronger as the wedge angle a increases for both PZT-4 and PZT-5. The roots show negligible
dependence on the type of piezoelectric material. The case of an interface crack between PZT and Gr./
Ep. is obtained when a=1808, and the singularity is identical to the classical inverse square root
singularity. A piezoelectric-graphite/epoxy wedge similar to that shown in Fig. 7(a) is also considered
and the singularities are found very weak (weaker than ÿ0.06) for the range of b shown in Fig. 7(a).

A completely bonded PZT±Gr./Ep. composite junction similar to that shown in Fig. 8(a) is examined
in the numerical study, no singularities are found for the considered range of a. A PZT±Gr/Ep. bi-
material junction with a fully debonded and electrically insulated interface is examined in Fig. 9(b). The
polarization of PZT is set to 08 with the debonded interface varied from 908 to 2708. Two roots exist for
PZT-5 and three for PZT-4. The roots are symmetrical about a=1808 and show strong dependence on
a. When a is 1808 (interface crack), the classical inverse square root type singularity is observed for both
piezoelectric materials. The nonexistence of singularities for a fully bonded bi-material junction and the
presence of strong singularities for a debonded junction indicate the importance of interface conditions
on the stress ®eld near a sharp corner.

5.4. Piezoelectric bi-material systems

Bi-material junctions involving PZT-4 and PZT-5 with a debonded interface de®ned by angle a are
considered in Fig. 10. Traction free and electrically open boundary conditions are assumed along the
debonded interface and full continuity (mechanical and electrical) conditions are assumed on the other

Fig. 10. Order of singularity for PZT-4±PZT-5 junctions with debonded interface.
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interface. The in¯uence of a on the singularities is investigated for three di�erent polarization
orientations (b1) of PZT-4 and for b2=08. Three modes of singularities are generally observed and the
signi®cance of poling direction b1 is clearly noted. The singularities are stronger than any of the
previously considered cases. It is also interesting to note that roots for b1=08 are not identical for
b1=1808. The strongest singularity is noted when the two materials are polarized perpendicular to each
other and a is greater than 1808. The singularity is relatively weaker when the two materials are
polarized in the same direction when compared to opposite directions. Furthermore, the singularities are
symmetrical about a=1808 when the materials are polarized in the same or opposite directions. The

Fig. 11. Order of singularity for three material systems with a crack in piezoelectrics.
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present case can be considered as a general case of a horizontal bi-material crack considered by Kuo
and Barnett (1991. It is seen from Fig. 10 that for a horizontal interface crack (a=1808), the strongest
singularity is obtained when the two piezoelectric materials are polarized in opposite directions.
Therefore the polarization orientations of both materials have a signi®cant in¯uence on the singular ®eld
near the tip of an interface crack between two piezoelectric materials. Other admissible homogeneous
boundary conditions can be considered on the debonded interface and the results are not presented here
for brevity.

5.5. Three material systems

Finally, the singularities in three dissimilar material systems, namely PZT, nickel and Gr./Ep.
composite, are considered. Such material systems are encountered in adaptive structures, stack
actuators, etc. The results are presented in Fig. 11 for two systems involving three materials. The
direction of polarization is assumed to be along the z-axis. The system shown in Fig. 11(a) has a fully
bonded interface between nickel and graphite/epoxy. Nickel±PZT and PZT±graphite/epoxy interfaces
are both fully mechanically bonded, and electrically closed and insulated respectively. A crack is
assumed in PZT-4 along the plane measured by the angle a. The crack faces have traction free and
electrically open boundary conditions. The numerical results show two to four roots depending on the
angle a. The singularities are very strong. The singularities corresponding this system in the absence of a
crack is also shown in Fig. 11(a). Note the singularities become severe due to the presence of the crack.
Fig. 11(b) shows results for a similar system involving PZT-4, PZT-5 and nickel. The crack is assumed
to exist in one of the piezoelectric materials and a=1808 corresponds to a debonded interface between
PZT-4 and PZT-5. Three roots are found for the debonded PZT-4/PZT-5 interface case. One to four
roots exist when the crack is inside the piezoelectric medium depending on the angle a. Note the
singularities are discontinuous across the interface of PZT-4 and PZT-5. Again, the singularities are very
strong. In the case of fully bonded junction without a crack, the singularity is very weak (ÿ0.0078), as
shown in the Fig. 11(b).

6. Conclusions

A general method of obtaining electroelastic singularities in piezoelectric wedges and composite
piezoelectric wedges/junctions is successfully developed by extending Lekhnitskii's formalism for elastic
anisotropic solids. The formulation is valid for an arbitrary polarization orientation. The characteristic
equation governing the order of singularity is transcendental and the MuÈ ller's numerical method (1956)
can be used to determine the roots accurately.

Compared to the corresponding elastic cases, piezoelectric wedges generally have one or more extra
admissible roots. Electric boundary conditions show a signi®cant e�ect on the order of singularities. The
singularities of piezoelectric half planes and semi-in®nite cracks are found to be invariant with respect to
the directions of polarization. The polarization orientation has a negligible in¯uence on singularities of
piezoelectric wedges with identical boundary conditions on both surfaces. However for di�erent
boundary conditions on the edges, the order of singularities show strong dependence on the polarization
angle.

The singularities are weaker for PZT±aluminum systems when compared to PZT±nickel systems. The
strongest singularities of PZT±graphite/epoxy systems are ÿ0.5, which correspond to the case of
horizontal bi-material crack. Fully bonded PZT-graphite/epoxy junctions do not show any singularities.
Bi-material systems of two piezoelectrics have stronger singularities that also depend signi®cantly on the
polarization direction. Two piezoelectrics polarized in the same or opposite directions show weaker
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singularities when compared to bi-material systems with polarizations perpendicular to each other.
Three material systems with a crack inside a piezoelectric medium have singularities stronger than the
classical inverse square root singularity. The presence of a crack or a debonded interface result in a
more severe singularity for both two and three material systems. The results presented in this study are
useful in material selection, optimum design and failure analysis of adaptive structures and piezoelectric
actuators. The present results are also useful to the development of special ®nite and boundary elements
for accurate simulation of electroelastic ®elds at crack tips and sharp corners.
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Appendix

The constitutive equations for a piezoelectric medium in the Cartesian system (x ', y ', z ') can be
written as (Berlincourt et al., 1964)

�E 0 � � �s 0 ��s 0 � � �g 0 �T�D 0 � �A1�

�E 0 � � ÿ�g 0 ��s 0 � � �b 0 ��D 0 � �A2�
For piezoelectrics with hexagonally symmetry with respect to z '-axis or piezoceramics polarized in the
z '-direction, [s '], [ g '] and [b '] are

�s 0 � �

26666664
s 011 s 012 s 013 0 0 0
s 012 s 011 s 013 0 0 0
s 013 s 013 s 033 0 0 0
0 0 0 s 044 0 0
0 0 0 0 s 044 0
0 0 0 0 0 2�s 011 ÿ s 012�

37777775 �A3�

�g 0 � �
24 0 0 0 0 g 015 0
0 0 0 g 015 0 0
g 031 g 031 g 033 0 0 0

35 �A4�

�b 0 � �
24 b 011 0 0
0 b 011 0
0 0 b 033

35 �A5�

where s 'ij, g 'ij and b 'ij denote elastic constants, piezoelectric constants and dielectric constants,
respectively.

The constitutive equations in the Cartesian system (x, y, z ) can be written in a form identical to Eq.
(A1) and (A2). The coe�cient matrices [s ], [ g ] and [b ] in the (x, y, z ) frame can be expressed in terms
of
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�s� � �h�T�s 0 ��h�; �g� � �a�T�g 0 ��h�; �b� � �a�T�b 0 ��a� �A6�
where angle b is shown in Fig. 2, and

�h� �

26666664
cos 2 b 0 sin 2 b 0 ÿ2 sin b cos b 0
0 1 0 0 0 0
sin 2 b 0 cos 2 b 0 2 sin b cos b 0
0 0 0 cos b 0 sin b
sin b cos b 0 ÿsin b cos b 0 cos 2 bÿ sin 2 b 0
0 0 0 ÿsin b 0 cos b

37777775 �A7�

�a� �
24 cos b 0 ÿsin b
0 1 0
sin b 0 cos b

35: �A8�

For plane problems, the constitutive equations can be further simpli®ed by applying the conditions of
plain stress/strain. In the case of plain strain (E 'yy=E 'zy=E 'xy=E 'y=0), Eq. (1) can be expressed in terms of
sij, gij, bij as

a11 � s11 ÿ s212=s22, a12 � s13 ÿ s12s23=s22, a13 � s15 ÿ s12s25=s22

a22 � s33 ÿ s223=s22, a23 � s35 ÿ s23s25=s22, a33 � s55 ÿ s225=s22

b11 � g11 ÿ s12g12=s22, b21 � g31 ÿ s12g32=s22, b12 � g13 ÿ s23g12=s22

b22 � g33 ÿ s23g32=s22, b13 � g15 ÿ s25g12=s22, b23 � g35 ÿ s25g32=s22

d11 � b11 � g212=s22, d12 � b13 � g12g32=s22, d22 � b33 � g232=s22:

The constants m 'n (n=1, . . . , 4) appearing in the Eq. (9) are the roots of the following equation

a11m 0 4 ÿ 2a13m 0 3 � �2a12 � a33�m 0 2 ÿ 2a23m 0 � a22 � 0 �A9�
and

H 0
1n � p 0n cos y� q 0n sin y; H 0

2n � ÿp 0n sin y� q 0n cos y �A10�
where

p 0n � a11m
02
n � a12 ÿ a13m 0n; q 0n � �a12m

02
n � a22 ÿ a23m 0n�=m 0n:
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